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Summary of Scientific Progress and Accomplishments 

Statement of the problem studied 

Advanced engines need to operate at higher boosted pressure, lower temperature, and variety of 

alternative fuels for higher energy efficiency, higher power, more fuel flexibility, and less 

emissions. However, at higher pressures, low temperature chemistry plays a critical role in 

affecting engine performance, engine knocking, combustion processes, and results in strong 

turbulence/chemistry interaction as well as new ignition and flame regimes. Quantitative modeling 

of such complicated reactive flow at extreme conditions requires detailed models for chemical 

kinetics and transport, and thus is extremely challenging.  

Summary of the most important results 

In this project, we developed a smart computational singular perturbation (CSP) method and a 

hybrid multi-timescale and correlated dynamic adaptive chemistry and transport (HMTS/CO-

DACT) method for accurate and computationally-efficient modeling of low temperature ignition 

and knock formation of surrogate diesel fuel mixtures. The results showed that the present CO-

DACT method is very computationally efficient to handle detailed chemical kinetics and multi-

species transport properties. The method was successfully applied not only to low temperature and 

high temperature ignition and flame modeling but also to the simulations of engine knocking. The 

results show clearly that not only low temperature chemistry but also its interaction with turbulence 

significantly affect knock formation. By considering both the temperature and fuel concentration 

gradients, an engine knock regime diagram with and without low temperature chemistry is 

obtained. Furthermore, the CO-DACT method is applied to the modeling of turbulent jet 

combustion. The results demonstrated that the CO-DACT method enhanced computation 

efficiency and the results are accurate. Moreover, numerical simulations were applied to the design 

of a novel inwardly off-center shearing (IOS) jet stirred reactor. The results show that the new IOS 

jet stirred reactor has an improved distribution of flow residence time. As such, the present study 

not only provides a computationally efficient tool for engine modeling and fuel design but also 

advances the understanding of role of low temperature chemistry in knock formation. 

 

1. A multi-timescale and correlated dynamic adaptive chemistry and transport (CO-

DACT) method for computationally efficient modeling of jet fuel combustion with 

detailed chemistry and transport  

1.1 Abstract 

A correlated dynamic adaptive chemistry and transport (CO-DACT) method is developed to 

accelerate numerical simulations with detailed chemistry and transport properties in a reactive flow 

with a jet fuel surrogate. Different sets of phase parameters, which govern the transport properties 

and chemical reaction pathways, respectively, are proposed to identify the correlated groups for 

transport properties and reaction pathways in both temporal and spatial coordinates. The correlated 

transport properties and reduced chemical mechanisms in phase space are dynamically updated by 

different user-specified threshold values. For the calculation of detailed transport properties, the 

mixture-averaged diffusion model is employed. For the on-the-fly generation of reduced chemistry, 

the multi-generation path flux analysis (PFA) method is used. In the present method, the chemical 

reduction and transport properties calculation are only conducted once for all the computation cells 

in the same correlated group within the pre-specified thresholds. Therefore, without sacrificing 

accuracy within the range of uncertainty of mechanisms and transport properties, the CO-DACT 
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method can eliminate all redundant chemistry reductions and transport properties calculations in 

temporal and spatial coordinates when the transport properties and chemical reaction pathways are 

correlated due to the similarities in phase space. The CO-DACT method is further integrated with 

the hybrid multi-timescale (HMTS) method to achieve efficient integration of chemistry. 

Simulations of out- ward propagating spherical premixed flames and one dimensional (1D) 

diffusion ignitions of a jet fuel surrogate mixture, as well as an unsteady spherical propagating 

diffusion flame of a DME/air mixture are conducted to validate the present algorithm. The impact 

of the selection of threshold values as well as the dependence of numerical errors on pressure and 

equivalent ratio are also examined. The results demonstrate that the CO-DACT method can 

increase the computation efficiency for transport properties by at least two-order of magnitudes. 

Moreover, it is robust, accurate, and improves the overall computation efficiency involving a large 

kinetic mechanism. The present results provide insights into knocking mechanisms in engines [1]. 

1.2 Results and Discussion 

In order to validate the HMTS/CO-DACT method, the results and performance of the proposed 

method are compared against other existing methods, including the VODE, HMTS and 

HMTS/CO-DAC methods. Detailed 

comparisons between the implementation of 

these methods are listed in Table 1. Numerical 

simulation of unsteady outwardly propagating 

spherical premixed flames and diffusion 

ignitions of a jet fuel surrogate mixture are 

carried out, which cover premixed and non-

premixed as well as stretched and un-stretched 

reactive flow conditions with strong chemistry-

transport coupling. Then, the numerical errors 

of the HMTS/CO-DACT method will be 

examined with different threshold values, 

pressures, and equivalence ratios. The 

mechanism used in this study is 

comprehensively reduced from a jet fuel 

surrogate mechanism by using the second-

generation PFA method. The surrogate jet fuel 

consists of four components fuels (40% n-

dodecane, 30% iso-octane, 23% n-propyl 

benzene, and 7% 1,3,5-trimethyl by mole 

fraction). The reduced mechanism has 425 species and 2275 reactions. 

Table 1. Comparisons of details between different methods [1]. 

 

 

Method Chemical 

reduction 

Chemical integration Transport properties 

VODE - VODE Mixture-averaged 

HMTS - HMTS Mixture-averaged 

HMTS/CO-DAC Correlated PFA HMTS Mixture-averaged 

HMTS/CO-DACT Correlated PFA HMTS Correlated mixture-averaged 

 

Fig.1 Flame trajectories comparison between 

VODE, HMTS, HMTS/CO-DAC and 

HMTS/CO-DACT methods of the stoichiometric 

jet fuel surrogate mixture at 10 atm and 300 K. 
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1.2.1 Premixed outwardly propagating spherical flames 

The premixed spherical propagating flame is ignited by a hot spot with 2000 K and 2 mm in 

radius at the center (X=0 cm) of the spherical coordinate. The homogeneous stoichiometric jet fuel 

surrogate mixture has the initial conditions with 10 atm and 300 K. The overall size of the 

computation domain is 5 cm and the boundary conditions are reflective at x = 0 and transmissive 

at X = 5 cm. The results of flame trajectory are compared between the VODE, HMTS, HMTS/CO-

DAC and HMTS/CO-DACT methods in Fig.1. The results demonstrate an excellent agreement 

between these methods. The maximum relative error along the flame trajectory among all these 

methods is less than 0.5%, which is much smaller than the experimental uncertainty of transport 

properties and flame speed measurements for chemistry validation (~5%).  

Figures. 2a and 2b plot the spatial distributions of selected phase parameters, including 

temperature, O2, Fuel, H2O and CO2, at physical time t = 1.6 ms. The flame surface is located 

around the location X = 0.495 cm. The results in Fig.2a demonstrate that the HMTS/CO-DACT 

method is accurate enough to capture the major structure of a premixed flame, including 

temperature and major species. The mass fraction distributions of the selected minor species and 

radicals, including OH, H, HO2 and H2O2, at the same physical time t = 1.6 ms, are plotted in Fig. 

2b to examine and demonstrate the accuracy of the HMTS/CO-DACT method on capturing those 

species which are not tracked and included in the phase space. Fig.2b also shows that the minor 

species follow the same accuracy as the major species and the discrepancies between different 

methods are negligible. Therefore, it successfully demonstrates that the proposed HMTS/CO-

DACT method can accurately predict the distributions of minor species and radicals for a large jet 

surrogate fuel mixture. 

Figure 3a shows the comparisons of the CPU time consumed by the transport properties 

calculation between different methods. The purple, black and red lines, which represent the VODE, 

HMTS and HMTS/CO-DAC methods, respectively, overlap together because the transport 

properties in these methods are computed by the same mixture-averaged diffusion model, as shown 

in Table 1. Thus, the CPU time of transport properties in first three methods should be the same. 

By comparing the HMTS/CO-DACT method with other methods, it shows that the proposed CO-

DACT method (blue line) is 230 times faster than the transport properties calculation in the 

mixture-averaged model, which is a dramatic increase of the computation efficiency for a large 

       

Fig. 2a (left) Distributions of temperature and major species (O2, Fuel, H2O and CO2) in the 

stoichiometric premixed flame at 1.6 ms; 2b (right): Distributions of minor radicals (OH, H, HO2 and 

H2O2) in the stoichiometric premixed flame at 1.6 ms. 
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kinetic mechanism. Figure 3b is the overall CPU time comparisons between VODE, HMTS, 

HMTS/CO-DAC and HMTS/CO-DACT methods at physical time t = 1.6 ms. The green, purple 

and red sections represent the CPU time consumed by convection flux, diffusion flux and transport 

properties calculation, respectively, and the blue section is the computation time of the chemical 

integrations. It is seen from this figure that compared to the first three columns, the proposed 

HMTS/CO-DACT method can significantly reduce the computation cost of transport properties 

calculation and, most important, makes it negligible even when a large chemical mechanism with 

several hundreds of species is involved. With the present CO-DACT method, the overall 

computation for flame propagation can be accelerated by factor of three compared with the original 

HMTS method and becomes more than one order of magnitude faster than the VODE method. 

1.2.2 Diffusion ignition and cool flames 

 The diffusion ignition is initiated at 1 atm and 1200 K with the pure air in the left half domain 

and pure fuel in the right half domain. A planar 1D domain with 5 cm is used and the reflective 

boundary conditions are applied for both side. The results of the diffusion ignition are compared 

 
Fig. 3a (left) Comparison of CPU time for the transport properties calculation between VODE, HMTS, 

HMTS/CO-DAC and HMTS/CO-DACT methods of the stoichiometric premixed flame. 3b (right): 

CPU time comparison between VODE, HMTS, HMTS/CO-DAC and HMTS/CO-DACT methods at 

1.6 ms of the stoichiometric premixed flame. 

       
Figure 4a (left): Distributions of temperature and major species (O2, Fuel, H2O and CO2) in the diffusion 

ignition at 3.5 ms. 4b (right): Distributions of minor radicals (OH, H, HO2 and H2O2) in the diffusion 

ignition at 3.5 ms.  
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between HMTS, HMTS/CO-DAC and 

HMTS/CO-DACT methods. Figures 4a 

and 4b, respectively, show the 

distributions of temperature, stable and 

radical species such as O2, Fuel, H2O 

and CO2, H, H, HO2 and H2O2, at t = 3.5 

ms. Once again, it shows an excellent 

agreement. Fig.5 shows that the 

HMTS/CO-DACT methods is 200 times 

faster than the other methods.  

To further validate the CO-DACT 

method for unsteady ignition including 

cool flame formation, a numerical study 

of transient combustion involving fuel 

injection into a hot air in a spherical 

chamber is conducted. The numerical 

configuration is shown in Fig. 6a. The 

spherical chamber is 20 cm in diameter 

with an adiabatic wall boundary 

condition. At the center of the chamber, there is a porous sphere with 2 cm in diameter allowing 

fuel injection into the chamber. Initially, the gas in the chamber is pure air at 20 atm and 700 K 

and quiescent. At time t = 0, be injected into the chamber from the porous sphere surface with an 

injection speed fixed at U0 = 1 m/s. The inlet fuel mixture contains 10% DME and 90% N2 in mole 

fraction. The boundary condition of the out wall is adiabatic and reflective. Fig. 6b plots the 

comparisons of the predicted time histories of the maximum temperatures (solid lines) and the 

corresponding locations of the maximum temperature (dash lines) of the unsteady ignition and 

flame formation process. The black, red and blue lines are the results calculated by HMTS, 

HMTS/CO-DAC and HMTS/CO-DACT methods, respectively. Due to the high pressure and 

      

Fig.6. (a) (left): Schematic of the unsteady ignition and flame formation in a spherical diffusion flame 

configuration. (b) (right): Comparisons of the predicted time history of the maximum temperatures and 

corresponding locations between HMTS, HMTS/CO-DAC and HMTS/CO-DACT methods of unsteady 

diffusion ignition/flame formation. 
 

 
Figure 5: Comparison of CPU time for the transport 

properties calculation between HMTS, HMTS/CO-DAC 

and HMTS/CO-DACT methods of the diffusion ignition. 

 




































